Electricity and Magnetism Lecture -3-

Electric Potential

Electric Potential

• Potential: is potential energy per unit charge.

The potential V defined at any point in an electric field as the potential energy U per unit charge associated with a test charge q_0 at that point:-

$$V = \frac{U}{q_o}$$
 or $U = q_o V$

Potential energy and charge are both scalars, so potential is a scalar. The unit of potential called volt, which is:

1 volt = 1 J/C = 1 joule /coulomb.

• Potential energy is the work done by electric force, $W_{a \rightarrow b} = -\Delta U$ during a displacement from a to b to the quantity $-\Delta U = -(U_b - U_a)$, on a "work per unit charge" basis. We divide this equation by q_o , obtaining :-

$$\frac{W_{a \to b}}{q_{o}} = -\frac{\Delta U}{q_{o}} = -\left(\frac{U_{b}}{q_{o}} - \frac{U_{a}}{q_{o}}\right)$$
$$= -\left(V_{b} - V_{a}\right) = V_{a} - V_{b}$$
$$V_{a} = \frac{U_{a}}{q_{o}}$$
 is the potential energy per unit

charge at point a , and similarly for V_b .

 Thus the work done per unit charge by the electric force when a charged body moves from <u>a</u> to <u>b</u> is equal to the potential at a minus the potential at b.

So the work done by the electric force is given by :-

$$W_{a \to b} = \int_{r_a}^{r_b} F \, dr = F \cdot r \Big|_a^b = \Delta \, \mathsf{U}$$

$$U_b - U_a = \frac{1}{4\pi\epsilon_o} \frac{q q_o}{r_b} - \frac{1}{4\pi\epsilon_o} \frac{q q_o}{r_a}$$

where $U_a = \frac{1}{4\pi\epsilon_o} \frac{q q_o}{r_a}$ when q_o is a distance r_a from q.

and $U_b = \frac{1}{4\pi\epsilon_o} \frac{q q_o}{r_b}$ when q_o is a distance r_b from q. Thus the potential energy U when the test charge q_o is at any distance r from charge q is :

Calculating Electric Potential

 To find the potential V due to a single point charge q , we divide eq. (1) by q_o :-

$$V = \frac{U}{q_o} = \frac{1}{4\pi\epsilon_o} \frac{q}{r} \quad \dots (2) \quad [\text{ potential due to a point charge}]$$

where r is the distance from the point charge q to the point at which the potential is evaluated.

- If q is positive , the potential that it produces is positive at all points.
- If q is negative , it produces a potential that is negative.
- In either case , V is equal to zero at $r = \infty$

To find the potential due to a collection of point charges:

$$V = \frac{U}{q_o} = \frac{1}{4\pi\epsilon_o} \sum_i \frac{q_i}{r_i} \quad \dots \dots \quad (3)$$

When we have a continuous distribution of charge along a line, over a surface, or through a volume, we divide the charge into elements dq, and the in eq. (3) becomes an integral :-

$$V = \frac{1}{4\pi\epsilon_{\rm o}} \int \frac{dq}{r} \quad \dots (4)$$

Finding Electric Potential from Electric Field:-

Can we determine V from electric field \overrightarrow{E} . The force \overrightarrow{F} on a test charge q_o can be written as :-

$$\overrightarrow{F} = q_o \overrightarrow{E}$$

And we can write the work done by the electric force as the test charge moves from \underline{a} to \underline{b} is given by:-

$$W_{a \to b} = \int_{a}^{b} \overrightarrow{F} \cdot dl = \int_{a}^{b} q_{o} \overrightarrow{E} \cdot dl$$

If we divide this eq. by q_{o} we obtain :-

$$\frac{W_{a \to b}}{q_{o}} = \int_{a}^{b} \overrightarrow{E} \cdot dl$$

But $\frac{W_{a \to b}}{q_{o}} = V_{a} - V_{b}$
 $\therefore V_{a} - V_{b} = \int_{a}^{b} \overrightarrow{E} \cdot dl$
 $V_{a} - V_{b} = \int_{a}^{b} \overrightarrow{E} \cdot dl$
 $W_{a} - V_{b} = \int_{a}^{b} \overrightarrow{E} \cos\theta dl \dots(1)$ Potential difference as an integral of \overrightarrow{E}

If the line integral $\int_{a}^{b} \overrightarrow{E} dl$ is positive, the electric field does positive work on a positive test as it moves from <u>a</u> to <u>b</u>.

The value of $V_a - V_b$ is independent of the path taken <u>a</u> to <u>b</u>, or

$$V_a - V_b = -\int_b^a \overrightarrow{E} dl \dots (2)$$

This has a negative sign compared to the integral in eq.(1) and the limits are reversed, hence eqs(1&2) are equivalent.

• If the moving in the direction of $\vec{E} \longrightarrow$ electric potential V decreases, if you move in direction. Opposite $\vec{E} \longrightarrow V$ increase

(a) A positive point charge

(b) A negative point charge

The unit of potential difference (1 V) is equal to the unit of electric field (1 N/c) multiplid by the unit of distance (1 m).

Electron Volts:-

When a particle with charge q moves from a point where the potential is V_b to a point where it is V_a , the charge in the potential energy U is :-

$$U_a$$
- U_b = q ($V_a - V_b$)= q V_{ab}

If the charge q equal the magnitude e of the electron charge q, 1.602 x10⁻¹⁹ C, and the potential difference is V_{ab} = 1V, the change in energy is :-

$$U_a$$
- U_b =(1.602 x10⁻¹⁹ C) (1V)= 1.602 x10⁻¹⁹ Joule

This quantity of energy is defined to be 1 electron volt (1 ev):

1 eV= 1.602 x10⁻¹⁹ J

Equipotential Surfaces:-

- 1. The equipotential surfaces is on at all the point of which the potential has the same value.
- 2. In equipotential surfaces no work is need to move the charge body over such surfaces.
- 3. The equipotential surfaces must be at right angle to the direction of the field at any point.

Potential Gradient :

The relationship between electric field and potential :-

$$V_a - V_b = \int_a^b \overrightarrow{E} dl \dots (1)$$

In eq.(1), $V_a - V_b$ is the potential of a with respect to b ,the change of potential encountered on a trip from <u>b</u> to <u>a</u>. we can write this is :-

$$V_a - V_b = \int_b^a dV = -\int_a^b dV$$
(1)

Where dV is the infinitesimal change of potential accompanying an infinitesimal element dI of the path from b to a. comparing to eq .(1) we have.

$$-\int_{a}^{b} dV = \int_{a}^{b} \overrightarrow{E} dl \qquad \dots (2)$$

These two integrals must be equal for any pair of limits a and b, and for this to be true. The integrals must be equal. Thus, for any infinitesimal displacement dl,

$$-dV = \vec{E} \cdot dl$$
(3)

To interpret this expression , we write \vec{E} and dl in terms of their components:-

$$\vec{E}$$
 = i Ex + j Ey + k Ez

 $d\hat{l} = i dx + j dy + k dz$; then we have :-

-
$$dv = \vec{E} \cdot \vec{dl} = Ex dx + Ey dy + Ez dz (4)$$

1 . .

-
$$dv = Ex dx$$
 $Ex = - \frac{dv}{dx}$

$$- dv = Ey dy \quad Ey = - \frac{dv}{dy}$$

-
$$dv = Ez dz$$
 $Ez = - \frac{dv}{dz}$

Or

$$Ex = -\frac{dv}{dx}$$
, $Ey = -\frac{dv}{dy}$, $Ez = -\frac{dv}{dz}$

We can write \vec{E} as

$$\vec{E} = - \left(i \frac{dv}{dx} + j \frac{dv}{dy} + k \frac{dv}{dz} \right)$$

In vector notation the following operation is called the gradient of the funcion f :-

$$\vec{\nabla}$$
 f = - ($i \frac{d}{dx}$ +j $\frac{d}{dy}$ + $k \frac{d}{dz}$) f

The operatoor denoted by the symmbol $\vec{\nabla}$ is called (grad) or (del) thus in vector notation :-

$$\vec{E} = - \vec{\nabla} V$$

The quantity $\vec{\nabla}$ V is called the "Potential gradient"

Potential at a point a long the axis of a dipole :-(and electric field)

$$V = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{q}{r}$$

= $\frac{1}{4\pi\epsilon_{o}} \left[-\frac{q}{r+l/2} + \frac{q}{r-l/2} \right]$
= $\frac{q}{4\pi\epsilon_{o}} \left[\frac{1}{r-l/2} - \frac{1}{r+l/2} \right]$
= $\frac{q}{4\pi\epsilon_{o}} \left[\frac{r + \frac{l}{2} - r + \frac{l}{2}}{r^{2} - l^{2}/4} \right]$
= $\frac{ql}{4\pi\epsilon_{o}} \left[\frac{1}{r^{2} - l^{2}/4} \right]$
if $r >> l \quad l^{2}/4$ neg.
Moment $P = q \quad l$

 $\therefore V = \frac{P}{4\pi\epsilon_{o}r^{2}}$ potential at a point a long axis of dipole

*Potential at a point on the perpendicular bisector of the dipole:-

$$V = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{q}{r}$$
$$V = \frac{1}{4\pi\epsilon_{o}} \cdot \left[\frac{q}{s} - \frac{q}{s}\right]$$

: V = zero

*The potential at a point on the axis of (uniformly charged). (and electric field)

$$V = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{dq}{s}$$
$$s^{2} = a^{2} + b^{2}$$
$$\therefore s = \sqrt{a^{2} + b^{2}}$$
$$V = \frac{1}{4\pi\epsilon_{o}} \int \frac{dq}{s}$$
$$= \frac{1}{4\pi\epsilon_{o}} \frac{q}{s}$$
$$V = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{dq}{s}$$

*Potential for charged sphere (uniformly charged)

Suppose the charge is q sphere radius a.

1) At point outside the sphere (p) :-

$$E_p = V = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2}$$
$$\therefore V_p = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r}$$

2) At a point placed on the axis for sphere (R):-

$$E_R = \frac{1}{4\pi\epsilon_o} \cdot \frac{q}{a^2}$$
$$\therefore V_R = \frac{1}{4\pi\epsilon_o} \cdot \frac{q}{a}$$

3) At inside sphere (or in center of sphere) at point Q:-

$$E_Q$$
=Zero

$$\therefore V_Q$$
=Zero